
Optimize the TX Architecture of RDMA
NIC for Performance Isolation in the

Cloud Environment

Yunkun Liao, Jingya Wu, Wenyan Lu, Xiaowei Li, Guihai Yan
{liaoyunkun20s, wujingya, luwenyan, lxw, yan}@ict.ac.cn

33rd Great Lakes Symposium on VLSI

演示者
演示文稿备注
Hello, everyone. My name is Yunkun Liao. I am from the Institute of Computing Technology at the Chinese Academy of Sciences. The topic of my presentation is optimizing the TX architecture of RDMA NIC for performance isolation in a cloud environment. Due to visa reasons, I'm unable to attend the conference in person.

Outline

Research Background
• Introduction to RDMA
• Performance Interference in Commodity RDMA NICs

Baseline TX RDMA NIC Architecture
Designs for RDMA Performance Isolation

• Multi-tenant RDMA Cloud Service Model
• Optimized-v1 TX RDMA NIC Architecture: Solving LS-BS Interference
• Optimized-v2 TX RDMA NIC Architecture: Solving BS-BS Interference

Experimental Setup and Results
Conclusions

2

演示者
演示文稿备注
My presentation will include six parts:
First, I will provide some background information on our research.
Second, I will present the baseline TX RDMA NIC architecture that we proposed in this paper.
Third, I will discuss our three designs for RDMA performance isolation.
Fourth, I will share our experimental methodology and results.
Fifth, I will present our conclusions.
Finally, I will invite any questions from the audience.

Introduction to RDMA

RDMA: Remote Direct Memory Access
• Offloads the transport layer to the RDMA NIC (RNIC)
• Bypass the OS kernel

Benefits:
• High throughput
• Low latency
• Low CPU overhead

Application Scenarios:
• Machine learning
• Web search
• Key-value store

3

data data

RDMA
protocol data RDMA

protocoldata

TCP/IP TCP/IP

RDMA
Network

RDMA NICRDMA NIC

Userspace

OS Kernel

演示者
演示文稿备注
Firstly, I would like to introduce the concept of RDMA technology. RDMA stands for remote direct memory access, which offloads the transport layer to the RDMA NIC. As the figure shown, the data transfer bypasses the OS kernel. RDMA provides several benefits such as high throughput, low latency, and low CPU overhead, making it widely used in applications such as machine learning, web search, key-value stores, and more.

Essential RDMA Elements

QP: Queue Pair, interface between the application and the NIC
• SQ: Send Queue, send message
• RQ: Receive Queue, receive message

WQE: basic element of the QP’s SQ or RQ

4

Application

RDMA NIC

WQE 1
WQE 2

WQE 1
SQ RQ

Post_Send Post_Recv

QP

Opcode
Address
Length

…

WQE

演示者
演示文稿备注
Then, I will introduce some essential RDMA elements for this presentation. Queue Pair is the interface between the application and the NIC, which is composed of a Send Queue and a Receive Queue. WQE is the basic element of the QP’s SQ or RQ, which includes the opcode, address, length and other information of a data transfer. The application post WQEs into SQ or RQ to initiate data transfer. The RDMA NIC process WQEs and generates packets.

RDMA Performance Isolation is Important

Cloud providers rely on multi-tenancy to improve RDMA NIC
utilization

• Share an RDMA NIC among multiple applications with different performance targets

Classification of applications:
• Bandwidth-sensitive (BS): large messages, require high bandwidth
• Latency-sensitive (LS) : sparse small messages, require low latency

Performance isolation: the behavior of one tenant should not
affect the performance of other tenants

5RDMA NIC

Bandwidth-
sensitive apps

Latency-
sensitive apps

演示者
演示文稿备注
Mainstream cloud providers have provided RDMA services for their virtual machines. These cloud providers rely on multi-tenancy to improve RDMA NIC utilization, which involves sharing an RDMA NIC among multiple applications with different targets. Following tradition, we classify applications as either bandwidth-sensitive or latency-sensitive. Bandwidth-sensitive applications send large messages and require high bandwidth, while latency-sensitive applications send sparse small messages and require low latency. Performance isolation means that the behavior of one tenant should not affect the performance of other tenants.

Performance Interference in Commodity RDMA NICs

Experiments setup
• 2 * Mellanox CX-5 RDMA NICs

Flow specification
• LS flow: message size = 64B
• BS flow: message size >= 4KB

Benchmarks
• An LS flow with a BS flow
• A BS flow with another BS flow

6

Performance interference between LS and BS application

Performance interference between BS applications

client server

演示者
演示文稿备注
We designed a motivational experiment to observe the existing performance interference in commodity RDMA NICs. In this experiment, we connected two Mellanox CX-5 RDMA NICs and generated latency-sensitive (LS) and bandwidth-sensitive (BS) flows between the client and server. When an LS flow coexists with a BS flow, the 50th and 99th latency percentile of the LS flow greatly increases as the achieved bandwidth of the BS flow increases. When a larger-sized BS flow coexists with another BS flow, it obtains more network bandwidth. Our experiments demonstrate that state-of-the-art commercial RNICs cannot provide effective performance isolation between LS and BS applications or between BS applications.

Software Scheduling Limitations

Performance overhead
• Extra software scheduler

CPU overhead
• Running software scheduler consumes CPU.

7

Our work aims to achieve performance isolation
from optimizing the transmit-side (TX) RDMA NIC
architecture.

Tenant
App 1

Tenant
App 2

Extra software scheduler

RDMA library

RDMA NIC

演示者
演示文稿备注
One approach to achieve performance isolation is to add a software scheduler between the application and the RDMA library. However, this implementation can add additional performance and CPU overhead. To maintain performance, it is essential to implement the performance isolation capability in the RDMA NIC hardware itself. Our work aims to achieve performance isolation by optimizing the transmit-side RDMA NIC architecture.

Why performance interference arise
Challenge: commercial RNIC is a secretive ’black box’;
Solution: establish a baseline TX RDMA NIC architecture;
Root causes of performance interference:

• Wqe_cache module: shared FIFO queue for prefetched LS and BS WQEs
• Rdma_transport module: Run-to-completion (RTC) scheduling processes a WQE until all

the packet descriptors of the WQE output.

8

Head-of-line (HOL) blocking between LS
WQE and BS WQE

Baseline TX RDMA NIC architecture

演示者
演示文稿备注
Before we optimize the architecture, we need to figure out the root cause of performance interference. However, commercial RNIC is a secretive ‘black box’ with hidden inner workings. To solve this challenge, we established a baseline TX RDMA NIC architecture based on open-source models. There are two reasons in the baseline architecture that cause performance interference. First, the wqe_cache module stores the prefetched WQEs of LS and BS tenants in a shared FIFO queue. Second, the rdma_transport module adopts run-to-completion scheduling, which processes a WQE until all the packet descriptors of the current WQE output. As shown in the right figure, there is head-of-line blocking between LS WQE and BS WQE. Due the strict processing order, the only packet of LS WQE is blocked by multiple packets of BS WQE.

Multi-tenant RDMA Cloud Service Model

Problem: RDMA NIC requires application-level information from
the cloud service provider.
Assumption: the cloud service providers and the RDMA NIC

vendors collaborate.
We propose an RDMA cloud service model at the application

level.
• Embed the tenant classification into the tenant_id.
• Embed the tenant_id into the QP number.

9

tenant Cloud service provider
create_tenant (type) tenant_id

QP number

Tenant registration Tenant_id embedding

演示者
演示文稿备注
RDMA NIC requires extra application-level information from the cloud service provider to classify QP according to their type. Before we dive into the details of architectural optimizations, we first introduce a new RDMA cloud service model. First, we assume that the cloud service providers collaborate with the RDMA NIC vendors. Then, we propose an RDMA cloud service model at the application level. Before creating RDMA-related objects, the application first registers itself using the create_tenant interface provided by the cloud service provider. The cloud service provider then allocates a tenant_id according to the type of tenant and labels the tenant_id by its type. Finally, we embed the tenant_id into the QP number to enable fast conversion from QP number to tenant_id and minimize the storage cost.

Optimized-v1: Separate Caching

We need to store the WQEs of LS and BS separately if we want
to apply further scheduling optimization.
Challenge: large FIFO cost in naïve separate caching
Observation:

• Wqe_cache is designed for prefetching WQE and masking the PCIe latency;
• The WQE consumption rates of LS and BS tenants are different.

Solutions:
• Store the BS WQEs in separate shallow (e.g. depth =2) FIFO queue.
• Store the LS WQEs in a shared FIFO queue

10

L
S
0

B
S
0

L
S
1

B
S
1

L
S
2

…

L
S
0

B
S
0

L
S
0

L
S
0

B
S
0

B
S
0

B
S
N

…

L
S
0

L
S
1

L
S
2

Shallow FIFO queue

Baseline shared caching Naïve separate caching Our separate caching

Shared LS FIFO queue

演示者
演示文稿备注
In the baseline architecture, we store both LS and BS WQEs in a shared FIFO queue, which only permits first-in-first-out order. To apply further scheduling optimization, we need to store the WQEs from different tenants separately. However, naively allocating a FIFO queue for each tenant leads to a large FIFO cost. We observe that the wqe_cache is designed for prefetching WQE and masking the PCIe latency. Furthermore, the WQE consumption rates of LS and BS tenants are different, which means they have different requirements for the depth of the FIFO queue. Based on these two observations, we store the BS WQEs in a separate shallow FIFO queue because the BS tenant has a low requirement for prefetching. Then, we store the LS WQEs in a shared FIFO queue with enough depth because there is no interference among LS tenants.

Optimized-v1: Slicing Execution

Slicing execution: makes BS tenants actively yield the right to
use rdma_transport, thus eliminating HOL blocking in baseline
RTC-FSM.

• Slicing_station: store the unfinished WQEs of BS tenants (defined as pending WQE,
p_wqe) for subsequent rescheduling.

• Slicing-FSM: introduces Write_back state to enable BS WQE to give up opportunities,
thus avoiding the BS WQE blocking LS WQE.

11

演示者
演示文稿备注
After separate caching has been applied, we can introduce slicing execution scheduling to replace the baseline RTC scheduling. The problem with the original RTC-FSM is that a BS WQE can block the LS WQE for an uncertain period due to uncertainty regarding the message size of the running BS WQE. The proposed slicing execution makes BS tenants actively yield the right to use rdma_transport, thus eliminating HoL blocking in RTC-FSM. The purpose of the slicing_station is to store unfinished WQEs of BS tenants for subsequent rescheduling, called pending WQE or p_wqe. The Slicing-FSM and RTC-FSM have the same execution path when the WQE comes from the LS tenant. However, for the BS WQE, Slicing-FSM only stays in the Process state for one iteration. If the remaining length exceeds zero after one iteration, the Slicing-FSM transitions from the Process state to the Write_back state, and rdma_transport updates and writes back p_wqe. Thus, the BS WQE can only block LS WQE for one iteration in the Slicing-FSM, making the processing delay of LS WQE more predictable at the host.

Optimized-v2: Isolated Backpressure for BS Tenants

Baseline coupled backpressure: any full queue will prevent
wqe_read_schedule from scheduling.
Problem: there is performance interference in

wqe_read_schedule because different BS tenant has different
WQE consumption rate.
Isolated backpressure: A BS QP is eligible only when its state is

eligible, and its corresponding BS_queue is not full.

12
Coupled backpressure Isolated backpressure

演示者
演示文稿备注
Ideally, the optimized-v1 architecture should solve the performance interference among BS tenants if we assume all BS tenants have the same packet size. However, in our experiments, the optimized-v1 architecture only slightly relieves the BS performance interference. We found that the root cause was the backpressure mechanism between wqe_cache and wqe_read_schedule. In the baseline architecture, the coupled backpressure will prevent wqe_read_schedule from scheduling if any BS queue is full. Thus, there is performance interference in wqe_read_schedule because different BS tenants have different WQE consumption rates. The BS tenant with a larger message size will negatively prevent the wqe_read_schedule from prefetching the WQE of BS tenants with smaller message sizes. Thus, we advocate for isolated backpressure, which means a BS QP is eligible only when its state is eligible, and its corresponding BS_queue is not full.

Optimized-v2: Adaptive WRR for BS Tenants

Message is segmented into packets according to PMTU
Problem: BS tenant with a larger PMTU value can get more

bandwidth.
Observations:

• Limited distribution of available PMTUs (256B, 512B, 1KB, 2KB, 4KB);
• The average message size of BS applications is over 1MB.

Solution: adaptive Weighted Round-robin (WRR) to schedule
multiple BS tenants instead of RR.

• For example, if the PMTU of tenant-A and tenant-B are 1KB and 2KB, then their
weight are 4 and 2. Then, tenant-A is twice as likely to be dispatched as B.

13

1KB 2KB 1KB 2KB 1KB 2KB 1KB 1KB2KB 1KB 2KB1KB

N-RR Adaptive WRR

Time

message

of packets = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀
𝑃𝑃𝑀𝑀𝑃𝑃𝑃𝑃

packet

演示者
演示文稿备注
In each iteration, the rdma_transport module segments the message into packets according to their PMTU. Although each BS tenant has the same chance to occupy the rdma_transport, a BS tenant with a larger PMTU value can get more bandwidth. We observed that the distribution of available PMTUs is limited, and the average message size of BS applications is over 1MB. Thus, we apply adaptive weighted round-robin to schedule multiple BS tenants. For example, if the PMTU of tenant-A and tenant-B are 1KB and 2KB, then their weights are 4 and 2. Thus, tenant-A is twice as likely to be dispatched as B.

Experimental Setup

We implemented the baseline, optimized-v1, and optimized-v2
architectures in Verilog-HDL for circuit-level evaluation.
These architectures are simulated and synthesized these two

architectures in Vivado 22.01.
Simulation platform:

14

TX Architecture
Model

SQ
(AXI VIP)

Benchmark
Driver

QP Context
Query Agent

Active qp state

Performance
statistics

演示者
演示文稿备注
Okay, now, we move to the part of experiments. We implemented the baseline, optimized-v1, and optimized-v2 architectures in Verilog-HDL for circuit-level evaluation based on Vivado. We connected these three architecture models with an SQ memory model, context query model, and benchmark driver. After the benchmark driver starts, it activates the QP state and samples the interested performance statistics.

Experimental Results: LS-BS Isolation

15

the optimized-v1 can nearly prevent the BS tenant from increasing
the latency of the LS tenant

the optimized-v1 can well isolate LS and BS tenants irrespective of
the number of BS tenants and the message size of BS tenants.

the optimized-v1 can decrease the waiting
latency to about 16 clock cycles, representing
one iteration of rdma_transport.

TX Architecture
Model

LS tenant，message size = 64B

BS tenant，message size >= 4KB

演示者
演示文稿备注
To observe the effectiveness of the optimized-v1 architecture in isolating LS and BS tenants, we co-activated an LS tenant with a BS tenant and varied the message size of the BS tenant from 4KB to 1MB. We recorded the WQE completion latency for 1000 WQEs. As a result, the optimized-v1 architecture can nearly prevent the BS tenant from increasing the latency of the LS tenant and bind the completion latency of an LS WQE to a constant.
Due to slicing execution, the optimized-v1 architecture can decrease the waiting latency to about 16 clock cycles, representing one iteration of rdma_transport. We then varied the number of BS tenants from 1 to 8 and observed the LS completion latency of optimized-v1. As expected, the optimized-v1 architecture is effective in isolating LS and BS tenants, regardless of the number of BS tenants.

Experimental Results: LS-BS Isolation

16
The adaptive WRR can solve the unfairness caused by packet size

optimized-v2 (only with isolated backpressure) can nearly achieve optimal fairness (Tenant-1 / Tenant-0 ≈ 1)
TX Architecture

Model

BS tenant-0，message size = 4KB

BS tenant-1，message size >= 4KB

演示者
演示文稿备注
To observe the effectiveness of the optimized-v2 architecture in isolating BS tenants, we co-activated BS tenant-0 with BS tenant-1, fixed the message size of BS tenant-0 to 4 KB, and varied the message size of BS tenant-1 from 4 KB to 1 MB. We simulated 1000000 clock cycles, recorded the generated data size for the two tenants, and calculated their relative proportion (Tenant-1 / Tenant-0) as an indicator of bandwidth interference. The results show that optimized-v1 architecture can only relieve the interference slightly, while optimized-v2 (with isolated backpressure) can almost achieve optimal fairness (Tenant-1 / Tenant-0 ≈ 1). We then varied the PMTU of BS tenant-1 from 1 KB to 2 KB. The results show that the adaptive WRR can solve unfairness caused by packet size.
�

Area overhead: no more than 1% for CLB LUT and CLB
Register when there are four BS tenants.

Performance overhead:
• Will the latency increase for a single running latency-sensitive tenant? No
• Can the bandwidth-sensitive tenant still achieve a 100Gbps line rate? Yes

Experimental Results: Overheads

17

演示者
演示文稿备注
To understand the hardware resource consumption, we synthesized the optimized-v1 and optimized-v2 architectures. The results show that the resource overhead is no more than 1% for CLB LUT and CLB Register when there are four BS tenants. The optimized-v2 architecture adds complexity to the baseline architecture, which may cause performance degradation. Therefore, we investigated whether there would be latency increase for a single running latency-sensitive tenant. The results show that there is no performance loss for the LS tenant, and the latency is shortened by one clock cycle. Another concern is whether the bandwidth-sensitive tenant can still achieve a 100Gbps line rate. The answer is yes, and the detailed analysis is included in the paper.

Conclusion

A baseline TX RNIC architecture to explain the performance
interference of current RNICs.
A new RDMA cloud service model.
The optimized-v1 and optimized-v2 architecture, avoiding BS

tenant’s interference with LS tenants and interference between BS
tenants.
Achieving optimal isolation compared with the baseline.

18

演示者
演示文稿备注
In conclusion, we have proposed a baseline TX RNIC architecture that explains the performance interference of current RNICs and provides new insights into the experiment results in previous research.
We have introduced a new RDMA cloud service model that balances the performance overhead and deployment cost. Additionally, we have proposed the optimized-v1 and optimized-v2 architecture to avoid BS tenant's interference with LS tenants and also interference between BS tenants.
Our circuit-level simulation results show that the final optimized-v2 architecture can achieve optimal isolation compared with the baseline. However, future work will include adopting a system-level evaluation.
Thank you for your attention to my presentation. If you have any questions, please feel free to contact me.

	�Optimize the TX Architecture of RDMA NIC for Performance Isolation in the Cloud Environment
	Outline
	Introduction to RDMA
	Essential RDMA Elements
	RDMA Performance Isolation is Important
	Performance Interference in Commodity RDMA NICs
	Software Scheduling Limitations
	Why performance interference arise
	Multi-tenant RDMA Cloud Service Model
	Optimized-v1: Separate Caching
	Optimized-v1: Slicing Execution
	Optimized-v2: Isolated Backpressure for BS Tenants
	Optimized-v2: Adaptive WRR for BS Tenants
	Experimental Setup
	Experimental Results: LS-BS Isolation
	Experimental Results: LS-BS Isolation
	Experimental Results: Overheads
	Conclusion

