Optimize the TX Architecture of RDMA NIC for Performance Isolation in the Cloud Environment

Yunkun Liao, Jingya Wu, Wenyan Lu, Xiaowei Li, Guihai Yan {liaoyunkun20s, wujingya, luwenyan, lxw, yan}@ict.ac.cn

33rd Great Lakes Symposium on VLSI

Outline

- ➤ Research Background
 - Introduction to RDMA
 - Performance Interference in Commodity RDMA NICs
- ➤ Baseline TX RDMA NIC Architecture
- ➤ Designs for RDMA Performance Isolation
 - Multi-tenant RDMA Cloud Service Model
 - Optimized-v1 TX RDMA NIC Architecture: Solving LS-BS Interference
 - Optimized-v2 TX RDMA NIC Architecture: Solving BS-BS Interference
- ➤ Experimental Setup and Results
- **≻**Conclusions

Introduction to RDMA

- ➤ RDMA: Remote Direct Memory Access
 - Offloads the transport layer to the RDMA NIC (RNIC)
 - Bypass the OS kernel
- **≻**Benefits:
 - High throughput
 - Low latency
 - Low CPU overhead
- ➤ Application Scenarios:
 - Machine learning
 - Web search
 - Key-value store

Essential RDMA Elements

- ➤ QP: Queue Pair, interface between the application and the NIC
 - SQ: Send Queue, send message
 - RQ: Receive Queue, receive message
- >WQE: basic element of the QP's SQ or RQ

RDMA Performance Isolation is Important

- Cloud providers rely on multi-tenancy to improve RDMA NIC utilization
 - Share an RDMA NIC among multiple applications with different performance targets
- ➤ Classification of applications:
 - Bandwidth-sensitive (BS): large messages, require high bandwidth
 - Latency-sensitive (LS): sparse small messages, require low latency
- ➤ Performance isolation: the behavior of one tenant should not affect the performance of other tenants

Performance Interference in Commodity RDMA NICs

>Experiments setup

2 * Mellanox CX-5 RDMA NICs

>Flow specification

- LS flow: message size = 64B
- BS flow: message size >= 4KB

≻Benchmarks

- An LS flow with a BS flow
- A BS flow with another BS flow

Software Scheduling Limitations

➤ Performance overhead

Extra software scheduler

➤ CPU overhead

Running software scheduler consumes CPU.

Our work aims to achieve performance isolation from optimizing the transmit-side (TX) RDMA NIC architecture.

Why performance interference arise

- ➤ Challenge: commercial RNIC is a secretive 'black box';
- ➤ Solution: establish a baseline TX RDMA NIC architecture;
- ➤ Root causes of performance interference:
 - Wqe_cache module: shared FIFO queue for prefetched LS and BS WQEs
 - Rdma_transport module: Run-to-completion (RTC) scheduling processes a WQE until all the packet descriptors of the WQE output.

Baseline TX RDMA NIC architecture

Multi-tenant RDMA Cloud Service Model

- ➤ Problem: RDMA NIC requires application-level information from the cloud service provider.
- ➤ Assumption: the cloud service providers and the RDMA NIC vendors collaborate.
- ➤ We propose an RDMA cloud service model at the application level.
 - Embed the tenant classification into the tenant_id.
 - Embed the tenant_id into the QP number.
 tenant Cloud service provider

Tenant_id embedding

Optimized-v1: Separate Caching

- > We need to store the WQEs of LS and BS separately if we want to apply further scheduling optimization.
- ➤ Challenge: large FIFO cost in naïve separate caching
- ➤ Observation:
 - Wge cache is designed for prefetching WQE and masking the PCIe latency;
 - The WQE consumption rates of LS and BS tenants are different.

>Solutions:

Store the BS WQEs in separate shallow (e.g. depth =2) FIFO queue.

Store the LS WQEs in a shared FIFO queue

Naïve separate caching

Shallow FIFO queue Shared LS FIFO queue

Our separate caching

Optimized-v1: Slicing Execution

- ➤ Slicing execution: makes BS tenants actively yield the right to use rdma_transport, thus eliminating HOL blocking in baseline RTC-FSM.
 - Slicing_station: store the unfinished WQEs of BS tenants (defined as pending WQE, p_wqe) for subsequent rescheduling.
 - Slicing-FSM: introduces Write_back state to enable BS WQE to give up opportunities, thus avoiding the BS WQE blocking LS WQE.

Optimized-v2: Isolated Backpressure for BS Tenants

- ➤ Baseline coupled backpressure: any full queue will prevent wqe_read_schedule from scheduling.
- ➤ Problem: there is performance interference in wqe_read_schedule because different BS tenant has different WQE consumption rate.
- ➤ Isolated backpressure: A BS QP is eligible only when its state is eligible, and its corresponding BS queue is not full.

Coupled backpressure

Isolated backpressure

Optimized-v2: Adaptive WRR for BS Tenants

- Message is segmented into packets according to PMTU
- ➤ Problem: BS tenant with a larger PMTU value can get more bandwidth.
- **≻**Observations:
 - Limited distribution of available PMTUs (256B, 512B, 1KB, 2KB, 4KB);
 - The average message size of BS applications is over 1MB.
- ➤ Solution: adaptive Weighted Round-robin (WRR) to schedule multiple BS tenants instead of RR.
 - For example, if the PMTU of tenant-A and tenant-B are 1KB and 2KB, then their weight are 4 and 2. Then, tenant-A is twice as likely to be dispatched as B.

Experimental Setup

- ➤ We implemented the baseline, optimized-v1, and optimized-v2 architectures in Verilog-HDL for circuit-level evaluation.
- ➤ These architectures are simulated and synthesized these two architectures in Vivado 22.01.
- ➤ Simulation platform:

Experimental Results: LS-BS Isolation

the optimized-v1 can well isolate LS and BS tenants irrespective of the number of BS tenants and the message size of BS tenants.

Experimental Results: LS-BS Isolation

The adaptive WRR can solve the unfairness caused by packet size

Experimental Results: Overheads

➤ Area overhead: no more than 1% for CLB LUT and CLB Register when there are four BS tenants.

	CLB LUTs	CLB Registers	Block RAM
baseline	1568 (0.68%)	3035 (0.66%)	0
optimized-v1	2209 (0.96%)	5393 (1.17%)	14.5 (4.6%)
optimized-v2	3417 (1.48%)	7509 (1.62%)	14.5 (4.6%)

➤ Performance overhead:

- Will the latency increase for a single running latency-sensitive tenant? No
- Can the bandwidth-sensitive tenant still achieve a 100Gbps line rate? Yes

Conclusion

- ➤ A baseline TX RNIC architecture to explain the performance interference of current RNICs.
- >A new RDMA cloud service model.
- ➤ The optimized-v1 and optimized-v2 architecture, avoiding BS tenant's interference with LS tenants and interference between BS tenants.
- >Achieving optimal isolation compared with the baseline.