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Thanks for the introduction. Good afternoon, everyone. My name is Yunkun Liao, a PhD student from the Institute of Computing Technology, Chinese Academy of Sciences. Today, I will present our research titled 'Efficient RNIC Cache Side-channel Attack Detection through DPU-driven Architecture.
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Here is today’s agenda.
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Background and Motivation
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First, the background knowledge and our motivation.
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Datacenter Networking Demands
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Emerging distributed applications, such as NCCL, demand low-latency and high-throughput network communication. Traditionally, software network stack runs on the CPU. However, there is a growing mismatch between the rapid increase in network speeds and the stalling improvements in CPU performance. //// To address this disparity, datacenter networking necessitates the adoption of hardware-based kernel bypass network technologies, such as RDMA, which can offload the network stack and meet the microsecond-scale latency requirements.
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RDMA Fits the Datacenter Networking Demands
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RDMA, which stands for Remote Direct Memory Access, is a leading hardware-based kernel bypass technology. It allows the RDMA protocol to be executed by a domain-specific hardware known as the RDMA Network Interface Card (RNIC). In RDMA, applications can communicate directly with the RNIC to transfer data, bypassing the operating system kernel, and achieving zero-copy functionality. When compared to TCP, RDMA offers lower latency, higher throughput, and reduced CPU consumption.
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RDMA Becomes Essential in the Cloud
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Figure 1: Traffic statistics of all Azure public regions between
January 18 and February 16, 2023. Traffic was measured by
collecting switch counters of server-facing ports on all Top of
Rack (ToR) switches. Around 70% of traffic was RDMA.
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In this talk we provide an overview of Meta's ROMA deployment based on RoCEV2 transport for supporting our
production Al Training infrastructure. We will shed light on how we designed our infrastructure to both maximize
raw pe thatis for the workload. We will talk about the challenges we
solved in Routing, Transport and Hardware layers we solved along the way to scale our infrastructure. We will also
touch on opportunities that remain in this space to make further progress over the next few years.
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Oracle Cloud Infrastructure (OCl) offers many unique services, including cluster network, an ultra-high performance network with support
for remote direct memory access (RDMA). In our previous First Principles video blog, Building a High Performance Network in the Public
Cloud, we explained how OCI's cluster network uses RDMA over Converged Ethernet (RoCE) on top of NVIDIA ConnectX RDMA NICs to
support high-throughput and latency-sensitive workloads. In this blog we discuss how we have further enhanced our offering to support
superclusters, which are designed to scale to tens of thousands of NVIDIA GPUs without compromising the performance that customers
have come to expect from our networks. The following video highlights some of the technologies undergirding superclusters.

Alibaba Builds High-Speed RDMA Network for Al and Scientific Computing
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Cloud service providers heavily deploy RDMA in their datacenters.

However, RDMA is originally designed for HPC.
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Major cloud service providers, such as Microsoft, heavily deploy RDMA in their datacenters. //// However, RDMA is originally designed for HPC. The adaptation of RDMA from traditional HPC environments to the cloud presents security challenges.
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RDMA Has Security Issues
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Public clouds leverage multi-tenancy to facilitate resource sharing. There are malicious tenants trying to eavesdrop other tenant’s data. RDMA exposes new attack surface to malicious tenants.
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An Attack Surface: PTE Caches in RDMA NIC

« RDMA NIC (RNIC) maintains page table entries (PTEs) for zero-copy data transfer.
* Frequently-accessed PTEs are cached on the chip.
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The RNIC maintains page table entries for zero-copy data transfer. Frequently-accessed PTEs are cached on the chip. In the example, the packet processing unit extracts the virtual address from RDMA request packets and sends it to the PTE cache for translation. If the PTE cache hits, the address translation requires only a single on-chip memory read latency. If the PTE cache misses, the packet processing unit must fetch the PTE entries from the host memory, incurring at least one PCIe round-trip latency. //// This timing difference is observable on the end host and can be used by malicious users to initiate timing-based cache side-channel attack.
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RNIC Cache Side-channel Attack Threat Model
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There is a specific RNIC cache side-channel attack. In this example, a key-value store server hosts data in memory, which is accessed via RDMA. Both the victim and the attacker are clients. The attacker’s goal is to infer the victim's access patterns, such as whether the victim accessed a particular key.


RCSCA Procedure
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2. Evict+Reload Side-channel Attack.

1. Evict: Read 44, A,, ..., A{sg
2. Wait a bit.
3. Read B, measure read latency

Server-side PTE Cache
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If read latency < Threshold, Victim accessed B.


演示者
演示文稿备注
To execute the RNIC Cache Side-Channel Attack (RCSCA), the attacker first reverse-engineers the RNIC PTE cache structure in a controlled environment. Then, the attacker performs an Evict-Reload side-channel attack. //// Step 1: The attacker evicts all existing cache entries from the targeted cache set. //// Step 2: The attacker waits briefly.  At the same time, the attacker may read the interested data object. //// Step 3: After some time, the attacker reads the targeted data object, B, and measures the read latency. //// If the latency is below a certain threshold, the attacker can infer that the victim accessed this data object because the data object is swapped in the PTE cache by the victim.
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Existing Switch-centric RCSCA Detection

* End-host CPU cannot detect RCSCA due to CPU bypass.
* End-host RNIC cannot provide programmable compute to detect RCSCA.
* Network-core programmable switch relies on a backend server to detect RCSCA!Ll,

©Detect RCSCA according to SCADET algorithm

m RNIC Backend Server
@ Send RDMA O Send attacker notification
traces R ERLLETTITPT LT PR
Z  Victim = : . 5
3 \ Control Plane: Weak CPU : I
= )~ . L ! ;w End Hosts |
= .,h ' L | [@Collect RDMA traces ! :
VL : : Data Plane: High-speed pipeline : ' .
! Attacker i . ;
. | —— Network Core :

RDMA-hosted Clients Programmable Switch RDMA-hosted Servers

Is the switch-centric design good enough?

[1] Xing, Jiarong, et al. "Bedrock: Programmable Network Support for Secure {fRDMA} Systems." 31st USENIX Security Symposium (USENIX Security 22). 2022.


演示者
演示文稿备注
RCSCA can be detected to prevent it. Detection mechanisms can be located either in the network core or at the end host. The end-host CPU cannot detect RCSCA because RDMA requests bypass the responder's CPU. The end-host RNIC processes RDMA packets directly, but traditional RNICs lack the programmable compute needed to detect RCSCA. Existing switch-centric RCSCA detection methods place detection within the network core. These methods use a programmable switch to collect RDMA traces but rely on a backend server to perform the actual detection. The backend server detects RCSCA using the SCADET algorithm. Is the switch-centric design good enough?
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[ Switch-centric RCSCA detection (Bedrock!ll) is slower than the attacker (Pythial2l).
1 Sensitive information may be leaked.

(Bedrock becomes much slower if there are many attacker-victim pairs.

(ASCADET execution time contributes a lot to the detection latency.

How to minimize the detection latency to minimize the information leakage?
[1] Xing, Jiarong, et al. "Bedrock: Programmable Network Support for Secure {fRDMA} Systems." 31st USENIX Security Symposium (USENIX Security 22). 2022.

[2] Tsai, Shin-Yeh, Mathias Payer, and Yiying Zhang. "Pythia: remote oracles for the masses." 28th USENIX Security Symposium (USENIX Security 19). 2019.
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We emulated a switch-centric RCSCA detection system called Bedrock. The experiment results show that Bedrock is slower than the attacker, known as Pythia. Therefore, sensitive information may be leaked. Moreover, Bedrock's performance degrades significantly when multiple attacker-victim pairs are involved. A substantial part of the detection latency is attributed to the execution time of the SCADET algorithm. //// The question is how to minimize the detection latency to minimize the information leakage.


Our Design: DPU-driven
RCSCA Detection
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The following is our DPU-driven RCSCA detection system.


Insight: Host-centric RCSCA Detection Is Better
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However, the traditional RNIC cannot be architected to detect RCSCA.
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Our insight is that host-centric RCSCA detection is better in terms of accuracy, scalability, and resource availability. First, RCSCA detection only requires analyzing RDMA traffic at the end host. Second, host-centric detection is inherently distributed. Third, the end host offers greater computing and storage resources. //// However, traditional RNICs lack the programmable compute needed for effective RCSCA detection.
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Key Opportunity: Data Processing Unit
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» Data Processing Unit (DPU): combines the functionality of traditional RNICs with
programmable compute and storage.
* We choose the FPGA-based DPU to demonstrate the DPU-driven RCSCA detector.

[3] Burstein, Idan. "Nvidia data center processing unit (dpu) architecture." 2021 IEEE Hot Chips 33 Symposium (HCS). IEEE, 2021.
https://www.yusur.tech/dpu/K2-Pro
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The key enabler for the host-centric design is the emerging Data Processing Unit (DPU). As shown in these two example DPU architectures, the DPU combines the functionality of traditional RNICs with programmable compute and storage capabilities. These capabilities can be used for RCSCA detection. In terms of flexibility, we selected an FPGA-based DPU to demonstrate the DPU-driven RCSCA detector.


Design of DPU-driven RCSCA Detector
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This figure provides an overview of our DPU-driven RCSCA detector. The attacker blocker forwards relevant RDMA requests to the trace collector while dropping requests from identified attackers. The attacker blocker is implemented in the programmable packet processor for two reasons: First, commodity programmable packet processors have a flow table, which can be used to identify packets. Second, they support the “Match-Action” abstraction, which can be used to forward or drop packets.
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Design of DPU-driven RCSCA Detector
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* We position the trace analyzer off the critical data path of the RDMA core to

minimize RDMA performance overhead.
 The SCADET detector is highly optimized to match the incoming request speed.
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Placing the trace analyzer directly on the RDMA core’s data path would increase the end-to-end latency of inspected RDMA requests. Therefore, we position the trace analyzer off the critical data path of the RDMA core to minimize performance overhead. The SCADET detector is highly optimized to match the incoming request speed.
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SCADET Algorithm
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Accelerating the SCADET algorithm is required.

[4] Sabbagh, Majid, et al. "Scadet: A side-channel attack detection tool for tracking prime-probe." 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE, 2018.
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The SCADET algorithm leverages the timing distribution of the Evict-Reload attack. During the evict phase, all ways of a specific cache set are accessed. The timing differences between these accesses are smaller than a value known as the intra-group threshold. In contrast, the timing difference between the Reload phase and the Evict phase is larger than the inter-group threshold. //// Based on this, an RCSCA detection algorithm is proposed. When a new memory-access trace arrives, its timestamp is compared with the latest timestamp of the current cache set. This comparison determines whether the memory access belongs to the Evict or Reload phase. For a memory access of Reload phase, a queue pair is flagged as an attacker if it has accessed all unique cache ways in the set. //// Based on our profiling on Bedrock, accelerating the SCADET algorithm is required.



SCADET Implementation: Storage Optimizations

Requirements:

* Hardware-friendly data structure: fixed-
length lists in continuous memory region.
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* Large capacity for 1000s sets: DRAM.
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We satisfy three storage requirements for the SCADET implementation. First, we use fixed-length lists in continuous memory region to store tag list and counter list, which is hardware-friendly. This data organization enables burst transfer. //// Second, to support large capacity for thousands of sets, we store the theses two data structure in DRAM. //// However, DRAM access is slow.  For a potential evict-reload attack, accesses on these two data structures have strong temporal locality. Therefore, we use a BRAM-based flow cache to enable fast access on these two data structures.
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SCADET Implementation: Computation Optimizations
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The SCADET logic has three nested for-loops in its critical path. Two loops search an element with a specific key. One loop search the element with the minimum counter value in the counter list. //// We leverage FPGA's logic flexibility to parallelize these loops, implementing both parallel matching and parallel minimum finding.
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The following is evaluation.
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Experiments Setup

* RNIC model: We assume the RDMA PTE cache of the NVIDIA Mellanox ConnectX-
4131A has 1024 sets and 128 ways per set according to the Pythia’s reverse
engineering result.

e Switch-centric baseline: We set up a real system to emulate and evaluate Bedrock.

* Our DPU-driven RCSCA detector: We develop the trace analyzer with Xilinx HLS
language and measure its cycle-accurate performance with Vitis 2022.1.

* Traces:

 Trace-1: Evict+Reload memory traces

* Trace-2: prefills the tag list before the injection of the Evict+Reload memory
traces (Trace-1), the worst workload for the DPU-driven detector.

* Trace-3: memory access trace following uniform distribution that emulates a

regular user
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Here are the experiment setups.
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Low RCSCA Detection Latency
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 DPU-driven design reduces the detection latency by more than 84.1%.
* DPU-driven design leaks zero sensitive information.
* The three proposed architectural optimizations for FPGA-based SCADET are essential.


演示者
演示文稿备注
Compared to the switch-centric design, the DPU-driven design reduces RCSCA detection latency by over 84%. DPU-driven design leaks zero sensitive information because the average per-trace latency is smaller than the minimum inter-request latency. The three proposed architectural optimizations for FPGA-based SCADET—flow cache, parallel matching, and parallel minimum finding—are essential for achieving this improvement.
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Zero Performance Overhead and Small FPGA
Resource Consumption

FPGA resource overhead: small,

(©) Performance overhead: 0 affordable for datacenter-grade FPGA.
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The detector is off the RDMA datapath.
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The performance overhead is zero because the detector is positioned off the RDMA datapath. As we can see from this table, the FPGA resource overhead is small, which is affordable for datacenter-grade FPGAs.
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Conclusion
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Finally, the conclusion.
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Conclusion and Outlook

1. RDMA security is a critical concern, especially given the widespread
deployment of RDMA in public cloud.

2. We have identified the weaknesses inherent in the current switch-centric
designs for RDMA security.

3. We advocate for the benefits of a host-centric approach, driven by the
capabilities of emerging Data Processing Units (DPUs).

4. Our demonstration of the substantial performance improvement in a DPU-
driven design, exemplified by the detection of RNIC cache side-channel attacks,
underscores its potential.

Takeaway: Smart DPU-driven Edge, Dumb Core.
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RDMA security is a critical concern, particularly with the widespread deployment of RDMA in public clouds. We have identified weaknesses in current switch-centric designs for RDMA security and advocate for a host-centric approach leveraging emerging DPU capabilities. Our demonstration of significant performance improvements in a DPU-driven design, particularly in detecting RNIC cache side-channel attacks, highlights its potential. The takeaway is: Smart DPU-driven Edge, Dumb Core.
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Thanks for your listening. 
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