

Yunkun Liao, Hanyue Lin, Jingya Wu, Wenyan Lu, Huawei Li, Xiaowei Li, Guihai Yan

SKLP, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

2024/12/3

Contens

Background and Motivation	01
Our Design: Athena	02
Evaluation	03
Conclusion	04

Background and Motivation

Neural Network for Computer Network

Neural Network (NN) has been used for several **network traffic analysis** tasks: anomaly detection, traffic classification, ...

- Enable "end-to-end" learning.
- identify complex patterns from network packets.
- Make better decision than handcrafted heuristics.

NN Inference on the Programmable Switch

Programmable switch can run NN inference within the network data plane

High throughput, Low latency

RMT Pipeline Architecture

- 1. Reconfigurable Match-Action Table (RMT) architecture forms the data plane of programmable switch.
- 2. RMT architecture is composed of multiple pipelined match-action stages.
- Each stage has multiple Action ALU that accepts Packet Header Vector (PHV) fields as operands and modifies PHV field.
- The bit width of PHV Field is limited and static.

Challenge: The Computing Power of RMT

Category	Description
logical	and, or, xor, not,
shadd/sub	signed or unsigned shift
arith	inc, dec, min, max
deposit-byte	any length, source & dest offset
$\operatorname{rot-mask-merge}$	$IPv4 \leftrightarrow IPv6$ translation uses
bitmasked-set	$S_1 \& S_2 \mid \overline{S_1} \& S_3$; metadata uses
move	if $V_{S_1} S_1 \to D$
cond-move	if $\overline{V_{S_2}} \& V_{S_1} S_1 \to D$
cond-mux	if V_{S_2} $S_2 \to D$ else if V_{S_1} $S_1 \to D$

Table 1: Partial action instruction set. $(S_i \text{ means source } i; V_x \text{ means } x \text{ is valid.})$

Action ALU

- Prefers bit operations
- No floating point
- No INT8, INT4, INT2 fixed point

RMT provides limited computing power for fixed-point Neural Network inference.

Prior Solutions for the Challenge

- 1. Reduce Model Complexity by Binary Neural Network
 - ➤ Represented work: N3IC^[1]

- XNOR, popcount and sign for BNN inference
- Operations supported by RMT.

Low model accuracy

- 2. Augment RMT with off-pipeline accelerator
 - ➤ Represented work: Taurus^[2]

- Introduce Map Reduce Unit to RMT.
- Map Reduce Unit runs INT8 NN inference at line rate.

High area/programming overhead

Our Motivation: Low-bit Neural Network

Question: How to efficiently execute low-bit NN inference in native RMT architecture?

Relative high accuracy and tiny chip area overhead.

Our Design: Athena

Challenge #1: Low-bit Vector Multiplication

RMT does not support vectorized low-bit operations.

With vectorized low-bit operations, PHV fields are fully utilized.

Without vectorized low-bit operations, PHV fields are under utilized.

Running Low-bit NN Inference by Decomposition

Weak of the Control of the Control

Yey idea: Spilt low-bit vector multiplication to multiple binary vector multiplications.

$$\mathbf{x} \cdot \mathbf{y} = \text{bitcount}(\text{and}(\mathbf{x}, \mathbf{y})), x_i, y_i \in \{0, 1\} \, \forall i.$$

 $\mathbf{x} \cdot \mathbf{y} = \sum_{m=0}^{M-1} \sum_{k=0}^{K-1} 2^{m+k} \frac{\text{Binary vector multiplication}}{\text{bitcount}[\text{and}(c_m(\mathbf{x}), c_k(\mathbf{y}))]},$

 $c_m(\mathbf{x})_i, c_k(\mathbf{y})_i \in \{0, 1\} \, \forall i, m, k.$

BNN Vector Multiplication

M-bit x Vector and K-bit y Vector Multiplication

Athena achieves vectorized low-bit vector multiplication without hardware modifications.

Challenge #2: Minimize the Inference Latency

Low-bit NN inference requires more computation than BNN inference.

We should minimize the inference latency overhead.

Leverage NN Sparsity for Computation Reduction

Which is a sparse of the second of the se

Unexplored question: which sparsity granularity is suit for RMT computation?

RMT-friendly Sparsity Granularity

Athena identifies column-wise 2:4 Sparsity as the RMT-friendly sparsity granularity.

Column-wise 2:4 Sparsity

1 2:4 Sparsity can achieve less popcount stages.

2 2:4 Sparsity can support the **activation splitting** optimization, reducing the neuron-level tiling factor.

Inefficient Densification

Densification removes unused activation elements based on the weight sparsity distribution.

How to densify a PHV field in one stage?

Sparsity Filter Instruction for Densification

- Add **Athena filter instruction** to RMT's action ALU: *Filter F2, F0, F1*.
- Tiny chip area overhead, zero programming model overhead.

We can densify a PHV field in one stage with Athena filter instruction.

Leverage Field-level Parallelism

Folding is the process of stacking bits from different neurons in the same position together.

N3IC^[1] iteratively stacks bits on one PHV field.

 \mathfrak{S} Folding N bits requires 2(N-1) stages

Athena organizes the fold as a tree to fully use ALUs of idle fields.

Athena Overview

Athena deploys sparse low-bit multi-layer perceptron (MLP) neural network inference on RMT pipeline architecture.

- Athena compressor use DoReFa-Net and 2:4 sparsity pattern to quantize and prune the NN.
- Athena compiler represents NN dataflow in P4 language based on provided NN and RMT configurations.
- We envision the next-generation RMT target to support the Athena filter extension.

Evaluation

Three Questions Answered by Experiments

- 1. Accuracy Improvement: Compared with the BNN, how much accuracy improvement does the sparse low-bit NNs generated by Athena compressor achieve in computer network tasks?
- 2. Inference Latency Overhead: Compared with the BNN, how much inference latency overhead does the spare low-bit NN dataflow generated by the Athena compiler introduce?
- **3. Athena Filter Extension Overhead**: How much overhead is the Athena filter extension?

Experiments Setup

Accuracy of Sparse Low-bit Model:

- Task: IoT traffic classification task on the UNSW IOT dataset.
- Model: three-layer MLP, one input layer, one hidden layer, and one output layer.
- Quantization: 2-bit
- Sparsity: unstructured, 2:4 column-wise sparsity

Inference Latency Overhead:

- We build an analytical performance model to evaluate the required logical stages of NN computation on RMT.
- PHV field width is configured as 32 bits according to commodity RMT-based switch.
- The number of PHV fields is configured to fully unroll all the layers of BNN based on the dataflow of N3IC

Filter Extension Overhead:

 We implement the Athena filter in Verilog and synthesize the Verilog on Synopsys Design Compiler 2022.12-SP1 using an open 15nm FreePDK.

Higher IOT Traffic Classification Model Accuracy

Results:

- The INT2 model with 2:4 sparsity has a 3.04X, 4.00X and 5.50X accuracy loss reduction compared with BNN.
- Second, 2:4 sparsity has comparable accuracy than the column-wise and unstructured pruning when the sparsity ratios are the same.

Optimized Inference Latency

- Athena BNN can achieve 2.34X, 3.80X, and 5.95X inference latency reductions compared with N3IC BNN.
- The Athena filter is essential to ensure Athena (2:4 Sparse) has lower inference latency than Athena (Dense).
- The activation splitting can effectively reduce the inference latency by reducing the tiling factor.
- The column-wise 2:4 sparsity achieves lower latency than row-wise 2:4, unstructured and column-wise sparsity

Better Model Accuracy and Inference Latency Trade Off

$$Pareto\ Efficiency = \frac{Accuracy\ Loss\ Reduction}{Relative\ Inference\ Latency}$$

Pareto Efficiency > 1: better design trade off.

Tiny Athena Filter Overhead

	Chip Area Overhead	Clock Frequency >= 1GHz
Athena filter	$0.09mm^{2}$	Yes
Taurus	$4.8mm^{2}$	Yes

- We set the entire chip area of a RMT switch as 57.4mm² (15 nm).
- Athena adds 0.2% chip area overhead.
- Athena reduces the chip area by 98%, compared with Taurus^[3].

Conclusion

Conclusion and Outlook

- 1. We explored the possibility of deploying low-bit NN on programmable switch to better support NN for computer network.
- 2. We proposed Athena, a full-stack solution for deploying low-bit NNs on the RMT pipeline.
- 3. We showed that Athena provides better design trade off than the STOA.
- 4. We can adapt Athena to other network data planes, e.g., the many-core architecture.

Takeaway: Intelligent Network Dataplane requires NN model.

