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Thanks for the introduction. Good afternoon, everyone. I am Yunkun Liao, a PhD student from the Institute of Computing Technology, Chinese Academy of Sciences. Today, I will present our research titled Athena: “Adding More Intelligence to RMT-Based Network Data Plane with Low-Bit Quantization.”
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Here is today’s agenda.



Background and Motivation
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First, I will cover the background and our motivation.



Neural Network for Computer Network

Neural Network (NN) has been used for several network traffic analysis tasks: 
anomaly detection, traffic classification, …
• Enable “end-to-end” learning.  
• identify complex patterns from network packets.
• Make better decision than handcrafted heuristics. 
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Computer networks are crucial in today’s computing infrastructure. However, managing them is challenging due to the increasing number of endpoints and complex functionalities. Neural networks have been used for network traffic analysis tasks, such as anomaly detection and traffic classification. Unlike handcrafted heuristics, neural networks enable “end-to-end” learning, allowing them to identify complex patterns from network packets and make better decisions.



NN Inference on the Programmable Switch
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A network switch consists of a control plane and a data plane, interconnected via a PCIe interface. In traditional fixed-function switches, the data plane is limited to packet forwarding, with neural network inference handled by the control plane. //// This involves dispatching feature vectors and neural network decisions between the control and data planes, introducing round-trip latency that limits decision speed. //// Emerging programmable switches, however, offer custom packet processing and stateful storage capabilities. This allows neural network execution to be deployed directly on the data plane, effectively eliminating the round-trip latency.




RMT Pipeline Architecture

1. Reconfigurable Match-Action Table (RMT) architecture forms the data plane of programmable switch.
2. RMT architecture is composed of multiple pipelined match-action stages.
3. Each stage has multiple Action ALU that accepts Packet Header Vector (PHV) fields as operands and 

modifies PHV field.
4. The bit width of PHV Field is limited and static.
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The reconfigurable match-action table (RMT) architecture forms the data plane of programmable switches. The RMT architecture consists of multiple pipelined match-action stages. Each stage features several Action ALUs that process PHV (Packet Header Vector) fields as operands and modify these fields. The bit width of PHV fields is fixed and limited.



Challenge: The Computing Power of RMT

RMT provides limited computing power for fixed-point Neural Network inference.

Action ALU
• Prefers bit operations
• No floating point 
• No INT8, INT4, INT2 fixed point
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However, RMT provides limited computing power for fixed-point neural network inference. The Action ALUs are optimized for bit operations and do not support floating-point or fixed-point arithmetic.



Prior Solutions for the Challenge
1. Reduce Model Complexity by Binary Neural Network

 Represented work: N3IC[1]
2. Augment RMT with off-pipeline accelerator

 Represented work: Taurus[2]

XNOR, 
Popcount,
Sign

1 bit

• XNOR, popcount and sign for BNN inference
• Operations supported by RMT.

• Introduce Map Reduce Unit to RMT.
• Map Reduce Unit runs INT8 NN inference at line rate.

Low model accuracy High area/programming overhead

[1] Siracusano, Giuseppe, et al. "Re-architecting traffic analysis with neural network interface cards." 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22). 2022.
[2] Swamy, Tushar, et al. "Taurus: a data plane architecture for per-packet ML." Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems. 2022. 
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One approach to address the limited computing power of RMT is to use Binary Neural Networks (BNNs), which represent neuron weights and activations with binary digits. This allows BNN inference to be implemented using the operations supported by RMT. //// However, the BNN-based approach often suffers from lower model accuracy. //// Another approach is to augment RMT with off-pipeline accelerators. For instance, the Taurus architecture introduces a Map Reduce Unit to RMT, enabling INT8 neural network inference at line rate. //// However, the accelerator-based approach often comes with high area and programming overhead.



Our Motivation：Low-bit Neural Network
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Question: How to efficiently execute low-bit NN inference in native RMT architecture? 
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We are motivated by low-bit neural networks, which represent neuron weights and activations using two or four bits. As demonstrated, a two-bit model can significantly improve accuracy for IoT traffic classification tasks. //// Our key question is how to efficiently execute low-bit neural network inference within the native RMT architecture, aiming to achieve relative high accuracy with minimal chip area overhead simultaneously.



Our Design: Athena
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We propose Athena to answer this question.



Challenge #1: Low-bit Vector Multiplication

RMT does not support vectorized low-bit operations.
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The first challenge is that RMT does not support vectorized low-bit operations. While vectorized low-bit operations would fully utilize PHV fields, these fields remain under-utilized without such support.




Running Low-bit NN Inference by Decomposition

Key idea: Spilt low-bit vector multiplication to multiple binary vector multiplications.

BNN Vector Multiplication 𝑀𝑀-bit 𝑥𝑥 Vector and 𝐾𝐾-bit 𝑦𝑦 Vector Multiplication

Binary vector multiplication

RMT supports binary vector-vector operations.

Athena achieves vectorized low-bit vector multiplication without hardware modifications.
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We observe that RMT natively supports binary vector-vector operations. //// Our key idea is to decompose low-bit vector multiplication into multiple binary vector multiplications. //// This approach allows Athena to achieve vectorized low-bit vector multiplication without requiring any hardware modifications.



Challenge #2: Minimize the Inference Latency

Low-bit NN inference requires more computation than BNN inference.

We should minimize the inference latency overhead.
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Low-bit neural network inference undoubtedly requires more computation than binary neural network (BNN) inference. Without optimizations, the low-bit model significantly increases inference latency. //// Therefore, it is essential to minimize the inference latency overhead.



Leverage NN Sparsity for Computation Reduction

NN models are sparse. Pruned NN models can maintain the accuracy.

Unexplored question: which sparsity granularity is suit for RMT computation?
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Neural network pruning is a widely used technique for reducing computation. Sparse neural network models can maintain accuracy while lowering computation demands. //// The sparsity granularity is crucial for the efficiency of accelerating sparse neural networks. The unexplored question is: which form of sparsity granularity is most suitable for RMT computation?



RMT-friendly Sparsity Granularity

2:4 Sparsity can achieve less popcount stages. 

Column-wise 2:4 Sparsity

2 weights are left in 
every 4 consecutive 
weights in a neuron, 
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PHV field is 
fully utilized.
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Athena identifies column-wise two-four sparsity as the RMT-friendly sparsity granularity. In two-four sparsity, only two out of every four consecutive weights in a neuron are retained. //// First, two-four sparsity reduces the number of popcount stages. The number of popcount stages is positively correlated with the maximum number of unpruned elements across parallel neurons. As shown in the example, two-four sparsity achieves a more balanced sparsity distribution among neurons, leading to fewer popcount stages. //// Second, two-four sparsity supports activation splitting optimization, which reduces the neuron-level tiling factor. This optimization ensures that the PHV field is fully utilized after densification.




Inefficient Densification

Densification based on existing RMT ALU, several stages, inefficientDensification process

Densification removes unused activation elements based on the weight sparsity distribution.

How to densify a PHV field in one stage? 
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The densification process removes unused activation elements based on the weight sparsity distribution. However, harnessing the benefits of two-four sparsity is challenging due to inefficient activation densification with existing RMT ALUs. As illustrated, multiple pipeline stages are needed to densify a PHV field using logic ANDing and shifting. //// The question is: how can we densify a PHV field in a single stage?



Sparsity Filter Instruction for Densification
 Add Athena filter instruction to RMT’s action ALU: Filter F2, F0, F1.
 Tiny chip area overhead, zero programming model overhead.

We can densify a PHV field in one stage with Athena filter instruction.
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We add the Athena filter instruction to RMT’s Action ALU. The instruction includes three operands. F-one and F-zero are PHV fields containing weight indices and activations with ineffective bits, while F-two holds the activation with no ineffective bits. The Athena filter structure uses multiplexers, resulting in minimal chip area overhead. As an instruction set extension, it incurs no additional programming overhead. With the Athena filter instruction, we can densify a PHV field in a single stage.



Leverage Field-level Parallelism

Folding is the process of stacking bits from different neurons in the same 
position together.

N3IC[1] iteratively stacks bits on one PHV field.

Folding 𝑁𝑁 bits requires 2(𝑁𝑁 − 1) stages 

Athena organizes the fold as a tree to fully use 
ALUs of idle fields.

Folding 𝑁𝑁 bits requires 2 log2 𝑁𝑁 Stages 

[1] Siracusano, Giuseppe, et al. "Re-architecting traffic analysis with neural network interface cards." 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22). 2022.
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Folding is the process of stacking bits from different neurons into the same position. Previous implementations stacked bits iteratively on one PHV field, so folding N bits required two times (N minus one) stages. //// Athena improves this by organizing the fold operation as a tree structure, allowing the use of idle ALUs more efficiently. As a result, folding N bits requires fewer stages.



Athena Overview

Athena deploys sparse low-bit multi-layer perceptron (MLP) neural network inference on 
RMT pipeline architecture.

• Athena compressor use DoReFa-Net and 2:4 sparsity pattern to quantize and prune the NN.
• Athena compiler represents NN dataflow in P4 language based on provided NN and RMT 

configurations.
• We envision the next-generation RMT target to support the Athena filter extension.
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Finally, we integrate all these innovations into Athena. Athena deploys sparse low-bit multi-layer perceptron neural network inference on the RMT pipeline architecture. First, the Athena compressor uses DoReFa-Net and two-four sparsity to quantize and prune the neural network. Second, the Athena compiler represents the neural network dataflow in the P4 language, based on the provided neural network and RMT configurations. Lastly, we envision future RMT architectures supporting the Athena filter extension.



Evaluation
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Next, I will present the evaluation.



Three Questions Answered by Experiments

1. Accuracy Improvement: Compared with the BNN, how much accuracy 
improvement does the sparse low-bit NNs generated by Athena 
compressor achieve in computer network tasks?

2. Inference Latency Overhead: Compared with the BNN, how much 
inference latency overhead does the spare low-bit NN dataflow 
generated by the Athena compiler introduce?

3. Athena Filter Extension Overhead: How much overhead is the Athena 
filter extension?
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We want to answer three questions. First, the accuracy improvement. Second, the inference latency overhead. Third, the Athena filter extension overhead.



Experiments Setup

• Accuracy of Sparse Low-bit Model: 
• Task: IoT traffic classification task on the UNSW IOT dataset.
• Model: three-layer MLP, one input layer, one hidden layer, and one output layer.
• Quantization: 2-bit
• Sparsity: unstructured, 2:4 column-wise sparsity

• Inference Latency Overhead: 
• We build an analytical performance model to evaluate the required logical stages of NN 

computation on RMT.
• PHV field width is configured as 32 bits according to commodity RMT-based switch.
• The number of PHV fields is configured to fully unroll all the layers of BNN based on the 

dataflow of N3IC
• Filter Extension Overhead: 

• We implement the Athena filter in Verilog and synthesize the Verilog on Synopsys Design 
Compiler 2022.12-SP1 using an open 15nm FreePDK.
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Here are the experiment setups.



Higher IOT Traffic Classification Model Accuracy

Results:
 The INT2 model with 2:4 sparsity has a 3.04X, 4.00X and 5.50X accuracy loss reduction 

compared with BNN. 
 Second, 2:4 sparsity has comparable accuracy than the column-wise and unstructured 

pruning when the sparsity ratios are the same.
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We evaluate model accuracy on an IoT traffic classification task across different network topologies, quantization precisions, and pruning methods. First, the two-bit model with two-four sparsity reduces accuracy loss by over three times compared to BNN. Second, two-four sparsity has comparable accuracy than the column-wise and unstructured pruning when the sparsity ratios are the same.



Optimized Inference Latency

 Athena BNN can achieve 2.34X, 3.80X, and 
5.95X inference latency reductions 
compared with N3IC BNN.

 The Athena filter is essential to ensure 
Athena (2:4 Sparse) has lower inference 
latency than Athena (Dense).

 The activation splitting can effectively 
reduce the inference latency by reducing 
the tiling factor.

 The column-wise 2:4 sparsity achieves 
lower latency than row-wise 2:4, 
unstructured and column-wise sparsity
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We compare the relative latency across different network topologies and dataflow mappings. Athena’s BNN achieves over 2.3 times the inference latency reduction compared to the previous state-of-the-art. The Athena filter is crucial for ensuring that sparse neural networks have lower inference latency than dense networks. Additionally, activation splitting effectively reduces latency by decreasing the tiling factor. We also compare relative latency across different sparsity granularities. Column-wise two-four sparsity achieves lower latency than row-wise two-four, unstructured, and column-wise sparsity.



Better Model Accuracy and Inference Latency 
Trade Off

𝑃𝑃a𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟𝐸𝐸𝐸𝐸𝑦𝑦 =
𝐴𝐴𝐸𝐸𝐸𝐸𝐴𝐴𝑟𝑟𝐴𝐴𝐸𝐸𝑦𝑦 𝐿𝐿𝑟𝑟𝐿𝐿𝐿𝐿 𝑅𝑅𝑟𝑟𝑅𝑅𝐴𝐴𝐸𝐸𝑟𝑟𝐸𝐸𝑟𝑟𝐸𝐸
𝑅𝑅𝑟𝑟𝑅𝑅𝐴𝐴𝑟𝑟𝐸𝐸𝑅𝑅𝑟𝑟 𝐼𝐼𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝐸𝐸𝐸𝐸𝑟𝑟 𝐿𝐿𝐴𝐴𝑟𝑟𝑟𝑟𝐸𝐸𝐸𝐸𝑦𝑦

𝑃𝑃a𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟𝐸𝐸𝐸𝐸𝑦𝑦 > 1: better design trade off.

N3IC

Athena

1 5.2 𝑃𝑃a𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟𝐸𝐸𝐸𝐸𝑦𝑦
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We define a factor called Pareto Efficiency, calculated as accuracy loss reduction divided by relative inference latency. This metric evaluates the quality of a design trade-off. Setting the Pareto Efficiency of the state-of-the-art to one, Athena achieves a Pareto Efficiency of five point two, indicating that Athena offers a significantly better design trade-off.



Tiny Athena Filter Overhead

Chip Area Overhead Clock Frequency >= 1GHz

Athena filter 0.09𝑚𝑚𝑚𝑚2 Yes

Taurus 4.8𝑚𝑚𝑚𝑚2 Yes

• We set the entire chip area of a RMT switch as 57.4mm2(15 nm).
• Athena adds 0.2% chip area overhead.
• Athena reduces the chip area by 98%, compared with Taurus[3].

[2] Swamy, Tushar, et al. "Taurus: a data plane architecture for per-packet ML." Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems. 2022. 
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Athena filter add zero point two percent chip area overhead. Compared with previous Taurus design, Athena reduces the chip area by ninety-eight percent.



Conclusion
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Finally, the conclusion.



Conclusion and Outlook

1. We explored the possibility of deploying low-bit NN on programmable switch 
to better support NN for computer network.

2. We proposed Athena, a full-stack solution for deploying low-bit NNs on the 
RMT pipeline.

3. We showed that Athena provides better design trade off than the STOA.
4. We can adapt Athena to other network data planes, e.g., the many-core 

architecture.
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We explored the potential of deploying low-bit neural networks on programmable switches to enhance neural network support for computer networks. We introduced Athena, a full-stack solution for deploying low-bit NNs on the RMT pipeline. Our results show that Athena offers a better design trade-off than the state-of-the-art. Additionally, Athena can be adapted to other data planes, such as many-core architectures. Finally, the takeaway is, intelligent network dataplane requires low-bit NN.



Thank you
Yunkun Liao

liaoyunkun20s@ict.ac.cn
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Thanks for your listening. 
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