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Thanks for the introduction. Good afternoon, everyone. My name is Yunkun Liao, PhD student from the Institute of Computing Technology at the Chinese Academy of Sciences. Today, I will introduce a domain-specific accelerator called PHD for Huffman decoding.
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Here is today’s agenda


Background Knowledge
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First, I will provide some background knowledge on parallel Huffman decoding.


Huffman Coding

* A lossless data compression scheme.
* Main idea: Encodes frequent symbols using shorter codewords and vice visa.

* Widely used in many data compression algorithms.
- LZSS, ZIP, JPG, etc.

* Domain-specific accelerator design for Huffman coding is required.
* This work accelerates Huffman decoding.

root symbol codeword symbols
X h(X) Huffman
a 00 encode encoding 77.8%
b 01 ¢ TdECOde Huffman
C 10 000110 decoding Others
d 110 codewords Others
frequent e 111

(a) (b) ()

(a) Huffman coding tree; (b) Huffman coding table; (c) Huffman encoding  Profiling conducted on the LZSS compression?
and decoding.

An accelerator for Huffman decoding is required.
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Huffman coding is a widely used data compression scheme. As shown in the Huffman tree, the main idea of Huffman coding is  to encode frequent symbols with shorter codewords. // According to a profiling conducted on the LZSS compression, Huffman encoding and decoding are the bottlenecks. Decoding is harder to accelerate than encoding due to inherent dependency. This work proposes a domain-specific accelerator for Huffman decoding.


Huffman Decoding

* Bit-serial decoding based on traversing the Huffman tree.

* Bit-parallel decoding based on looking up codebook.
* Dominated method in existing Huffman decoding accelerators.

root addr symbol

The codebook can be constructed 290 a
from the Huffman tree. 8(1](1] E How to decode
> 011 | b multiple |
100 ¢ codewords in
101 ¢ parallel?
—> 110 d
111 e

Huffman tree Regular codebook

Decoding “110” to “d” requires three traversals. Decoding “110” to “d” requires one lookup.

Huffman decoding requires codeword-level parallelism.
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The most straightforward Huffman decoding algorithm is the bit-serial decoding. The bit-serial decoding traverse the Huffman tree from the root node to the leaf node. // For example, decoding “110” requires three traversals. // To eliminate the need for Huffman tree traversal, bit-parallel decoding is proposed. // In bit-parallel decoding, a codebook is constructed from the Huffman tree. With the codebook, decoding “110” requires only one lookup. // However, adjacent codewords are decoded in serial due to the unknown codeword boundaries.


Parallelizing Decoding is Hard

* Codeword-level parallelism can be obtained by partitioning the codeword bit stream.

A codeword

codeword bit stream
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Codeword-level parallelism can be obtained by partitioning the codeword bit stream. // After the partition,multiple decoders work on the substreams in parallel. // However, A codeword may span two substreams. // This kind of parallelism is only achievable when the codeword boundaries are identified in advance. 


B
Parallelizing Decoding by Self-synchronization

* Almost all Huffman codes have the self-synchronization property=2.

* Achieve codeword-level parallelism with the self-synchronization.
* Phase_1: Intra-sequence synchronization.
* Phase_2: Inter-sequence synchronization.
* Phase_3: Calculating the codeword boundaries.
* Phase_4: Parallel decoding on N subsequences.

decoding from 15¢ bit last_codeword_bit

_s nc._info
codeword_number
012345
DPP[[frjsubsequence
a b last codeword
codeword_number: 2
last_codeword_bit: 4

2 sequences
4 subsequences

.......

$ _______ |

synchironized

Example

decoding from 6th pit (a): N=4, M=2 (b)
(a) Codewords splitting; (b) Synchronization information; (c) Phase_1; (d)
Phase_2 (e) Phase_3 (f) Phase_4.

Self-synchronization property.

Self-synchronization trades computational complexity for parallelism.
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The good news is that almost all Huffman codes have the self-synchronization property. As shown in the example, decoding from the sixth bit can also generate correct symbols. // Based on this property, the parallel Huffman decoding algorithm is proposed, consisting of four phases (ˈfeɪzɪz). The original codewords are split into multiple equal-sized subsequences. A fixed number of subsequences form a sequence. Phase One is called Intra-sequence synchronization where parallel decoders find the correct codeword boundaries within a sequence. // Phase Two is called Inter-sequence synchronization, where parallel decoders re-align the codeword boundaries among sequences (ˈsiːkwənsɪz). // In Phase Three,  the codeword boundaries between subsequences are calculated. // In Phase Four, all the subsequences are decoded in parallel because the codeword boundaries are identified. // // Overall, the self-synchronization-based parallel decoding uses the first three phases to resolve the codeword dependencies between subsequences, to allow parallelism in the fourth phase.


.

Parallelizing Decoding Example

. ; . . —> Codeword boundary
0|0(0|1 0|0(0|1 0|1 0|01 S g
Decoder
| ! | |
1{011(1 1(0(1]|1 1(1 O|1(1
| ! | |
0|0|1(1 0|0(1]1 1(1 O|1(1
lwwl | l
0001'§ 0|0|0]|1 0|1 001§
) | ) |
110]1|0 X 1101110 110 01110 g Reference Huffman Tree
Decoder state table: Sync‘/, Not Sync X,
) X N N
i i ‘d/ Assume decoding one symbol requires constant time T
\ < N N Serial decoding: 9T
X v v Parallel decoding : 8T
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Here is an example. Assume (əˈsuːm) we have five subsequences. At the beginning, each subsequence assumes the codeword boundary at the end. Five unsynchronized decoders will decode the subsequences in parallel. After one iteration (ˌɪtəˈreɪʃn), the decoders will identify new codeword boundaries. If the codeword boundary is unchanged, corresponding decoder is synchronized. The unsynchronized decoders overflow to the adjacent subsequence. After all the decoders are synchronized, the correct codeword boundaries are identified. Overall, the parallel decoding algorithm will reduce the decoding time compared to the serial decoding.



Proposed Architecture: PHD
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Second, I will present the novelty proposed in PHD.


Overall Architecture of PHD

* PHD: The first self-synchronization-based Parallel Huffman Decoder architecture for
FPGA.
» Codebook interface based on hybrid memory.
* ONCE MORE decoding optimization.
* Tile-based pipeline dataflow.

[ Input Stage H Intra-sequence ]_,[ Inter-sequence Symbol Gen ]_, Output I ______________________________ [ Secondary Codebook |« [BRAM|  [DRAM|
Sync Stage Sync Stage Stage Stage 5 | "Switch to next FIFO when AXI Memory Mapped
Tile-based Pipeline FIFO i i current FIFO has finished \ e U
Forward - ey - Secondary Interface TCode :
CD| ‘.'| 2F NI o | Round-robin Scheduler | / ; > Read g
S [«—>Decoder 1 S («>Decoder1| £ || § > Symbol y w Secondary |
T 0 3 3 23| % FIFO1 | |mm [ ! at =L <[Read |
£ £ 3 ol € _ AXI Stream T ead |
AX| Stream |y > €| | kontrol 21 | kontroler—=% [ 8| | [control : , perializer CRtelai gﬁai 5 Primany)
i £ : Controller £ . Controller| £ * |Controller . > m . rl_ r . :
Codewords [Disbatcher J | NEE a| | :|[= Symbols "L |icbde Threshold
. [ E— £ S ) S T)ecoder i i A
1| sync_info LS Decoder 2 Decoder 8 Decoder b Prima Prima L @
: - = .| T P1 T po TP ps [PIFIFOP4 02 ry S
: b Codebook_1 Codebook_Pi«
1| Subseq_1 ... SubSeq_ N : '
' —— — [ R
.| [ CodewordTile || i [JCtly =" wCHPI Ry yor e ATyl cnt o/ Offine Compact
. b R Codebook Codebook Codebook Interface based on Codebook G P t
______ Seq_1 .- Sed M |1 | Interface | | Interface | | Interface | Hybrid Memory ————l
(a) (b)
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PHD is the first self-synchronization-based parallel decoder architecture for FPGA, including three main novel designs. // First, a codebook interface based on hybrid memory is proposed to balance the lookup speed and Block RAM consumption. // Second, the ONCE MORE decoding optimization is proposed to make subsequence-level decoders faster. // Third, a tile-based pipeline is proposed to address the limitation of codeword tile.


The Challenge of Codebook Storage

* The decoders of PHD is based on bit-parallel Huffman decoding, requiring codebook.

* Homogeneous storage designs.

* BRAM-only: Fast, but with limited codebook size.

Regular codebook for S-bit Huffman code is 25 bytes.
* For HTTP/2 HPACK Huffman code3, S is 30, requiring 2GB.

* DRAM-only: Support large codebook, but slow.
* Low-latency and storage-efficient codebook interface is required.

S, « | Forward 5 é &
|
S [«—>Decoder 1 § [«—>{Decoder 1 E ] S < >|Decoder 1>
= 35 O ol =
ol © =|| ®
g 9 g4 538 1 4
L : s} : il e .
.EI - Controller .'_:_I IController| .EI : |Controller
8 Decoder 8 Decoder 2 Decoder
a p1 T[PL_p2 S - R e
CH_1 ;], s CH_PT CH 1y +++ ,CH_P2 CH_7;, T ‘LCH_P4
Codebook Codebook Codebook
Interface Interface Interface

PHD should balance the lookup speed and BRAM consumption.
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As shown in the background, bit-parallel decoding is faster than bit-serial decoding. The decoders of PHD are based on the bit-parallel Huffman decoding. The bit-parallel decoder looks up the codebook to translate the codewords into symbols. How to store the codebook on FPGA efficiently? Homogeneous storage designs like BRAM-only or DRAM-only have drawbacks. // A BRAM-only design is fast, but the codebook size is limited by tight BRAM capacity. A DRAM-only design can support a large codebook, but it is slow. Ideally, a low-latency and storage-efficient codebook interface is required. // PHD should balance the lookup speed and BRAM consumption.


Codebook Interface based on Hybrid Memory

* Key enabler: Most Huffman codes are canonical. The regular codebook for canonical
code can be split into one primary codebook and multiple secondary codebooks?.

* Our insight: Primary codebook is for short codewords. The symbols of short codeword
are more common in Huffman code by design.

* Qur hybrid storage design:
* Multi-channel BRAM for primary codebook
» Shared-channel DRAM for secondary codebooks.

| Secondary Codebook |<— _____ BRAM
addr symbol addr symbol AXI MemonMapped i Toode |
000 [a]  Forcanonical 00 [@] prima ] | || [
001 [a 01 [ Pimary T F /ey |
010 [b Huffman code 10 ¢ |codebook o x| Primary
011 |'b | > 04 cr1| 7 |cor e LEede Threshold ... j
100 ¢ threshold = 11 T T ]
101 [ ¢ . . .
110 S 0 [ econdary e A | gzeae UL
11 Le 1 e lcodebook [ R S SO B R CH_1 CH_P '
Regular codebook Compact codebooks CDF of code length from Codebook interface based

HPACK-Huffman files on hybrid memory

PHD makes short (common) -codeword lookup fast.

THE CHIPS

L
%"’ NFERENG 4Yamamoto, Naoya, et al. "Huffman coding with gap arrays for GPU acceleration.“ In ACM ICPP, 2020.

'SHAPING THE NEXT GENERATION OF ELECTRONICS


演示者
演示文稿备注
The codebook interface of PHD is based on hybrid memory. Most practical Huffman codes are canonical. The key enabler is that the regular codebook for canonical codes can be split into one primary codebook and multiple secondary codebooks. The primary codebook is for codewords of small length. // We observe that symbols with small codeword lengths are more common in Huffman codes by design. // Our hybrid storage design uses multi-channel BRAM for the primary codebook to make common cases fast. The less common secondary codebooks are stored in the shared-channel DRAM.


ONCE MORE Decoding

Codewords are sent to a shift-register-based window for decoding.

* Previg.|s naive. daaodin .87 generate one symbol per iteration.
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shift-registers-based codeword window

Codeword-1 Codeword-2

< >
The shift register can contain the longest

codeword.

PHD makes subsequence-level decoders fast.

. SWeiRenberger, André, et al. "Massively parallel Huffman decoding on GPUs." In ACM ICPP, 2018.
%w[ﬁs@z?ﬂs ®Rivera, Cody, et al. "Optimizing huffman decoding for error-bounded lossy compression on gpus." In IEEE IPDPS, 202
“““““““““““““““““““““““““““““ TAMD Xilinx. “Vitis Accelerated Libraries.” https://www.xilinx.com/products/design-tools/vitis/vitis-libraries.htm
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In the bit-parallel decoder, codewords are sent to a shift-register-based window for decoding. The codeword window can contain the longest codeword. //We observe that the codeword window may contain multiple short codewords. // Previous methods generate one symbol per iteration naively. // We propose the ONCE MORE decoding, which decodes a codeword window in one iteration as much as possible. In detail, after one symbol is decoded, the decoder will try to decode the codeword window once more time before updating the codeword window.


The Challenge of Codeword-Tile Dependency

* On-chip codeword tile is used to support one-cycle codewords access.

* The size of on-chip codeword tile is limited and codewords are split into multiple tiles.

* There are dependencies between consecutive tiles.
* A codeword may span two tiles.

* Ignoring the dependencies between consecutive tiles leads to incorrect decoding results
of the remaining codeword tiles.

Dependency

AXI| Stream Task
LN —)

Tiley Tileq Codewords _ |Dispatcher

e
codeword presssssossococ-c U ISR Vo 1
1| sync_info

ne_infomation_0

Pipeli

' P '3 E “‘
|| Subseq_1 --- SubSeq_N :
! =1
i | Codeword Tile | @ :
Seq 1 --- Seq M

______________________________________

[llustration of the codeword-tile dependency

PHD should guarantee the correctness.
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On-chip codeword tile is used to support one-cycle codewords access. The size of on-chip codeword tiles is limited. Therefore, codewords are split into multiple tiles. However, there are dependencies between consecutive tiles because a complete codeword may span two tiles. Ignoring the dependencies between consecutive tiles leads to incorrect decoding results of the remaining codeword tiles. //


B
Tile-based Pipeline

* Our insight: no dependencies between codeword tiles at the subsequence level in the
Intra-sequence synchronization stage.
* Intra-sequence Sync of Tile, can run in parallel with the inter-sequence Sync of Tile;.

* Our methods: remember and forward the remaining bits of the previous tile to the
subsequent tile in the inter-sequence synchronization stage.

________ mwe—

' Tileq Inputlntraé?zgence Inter—;iggence Sén;?]OlOutput Tile-based Pipeline |
lStart dispatch Tile FogfsrifreTTlaeTing

[ Tileo Input rntra-gizgence Inter-gizzence S;(/;n;tr)]ol Output < Reduced latency }

_____________________________________________________________________________________________________________________________________

, Intra-sequence Inter-sequence Symbol Intra-sequence Inter-sequence Symbol :
' pipeline npu Sync Sync Gen Outputinput Sync Sync Gen Output :

PHD enables tile-level parallelism without compromising correctness.
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We observe that there are no dependencies between codeword tiles at the subsequence level in the intra-sequence synchronization stage. In the figure, the intra-sequence synchronization of Tile-two can run in parallel with the inter-sequence synchronization of Tile-one. How do we resolve the dependency between tiles? The inter-sequence synchronization stage of PHD remembers and forwards the remaining bits of the previous tile to the subsequent tile in the inter-sequence synchronization stage. //


Experiment Results
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Third, I will share the experiment results.


Setup

* Huffman code: HTTP/2 HPACK, used for compressing the HTTP/2 packet header fields.

* PHD: Described using the Xilinx HLS C++, Xilinx Vitis 2022.1 is used for cycle-accurate
simulations, synthesis and implementations.

 Baselines:

CPU: a performance-optimized library called LS-HPACKS, running on Intel Core-i5 12400 processor.

GPU: the open-source code of WeiRenberger?, adapted to HTTP/2 HPACK, running on NVIDIA GeForce
RTX 4090 GPU.

FPGA: Bit-parallel, described using the Xilinx HLS C++.

G 8https://giithub.com/litespeedtech/ls-h pack
/;,;ro"s#s’r’sms %https://github.com/weissenberger/gpuhd
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We select the HTTP/2 HPACK Huffman code as the case study, which is used for compressing the HTTP/2 packet header fields. We describe PHD in Xilinx HLS. Xilinx Vitis is used for cycle-accurate simulations, synthesis, and implementations. Three types of baselines are selected, including CPU, GPU, and FPGA baselines.


B
Decoding Latency

* Results:
» Compared with CPU baseline: a latency reductions ranging from 24.5X to 60.6X.
* Compared with bit-parallel FPGA baseline: a latency reduction ranging from 18.5X to 57.5X.
» Compared with GPU baseline: latency reductions of 5.6X to 25.4X over WeiRenberger.
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S 2.3X

S 200- [ "

o JBN “----B B

2 Y 4 v
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The size of symbols (bytes)

PHD is faster !
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PHD demonstrates superior speedup compared to CPU, FPGA, and GPU baselines. The proposed optimizations, such as ONCE MORE decoding and the tile-based pipeline, are essential for achieving PHD's exceptional performance.


Energy Consumption

* Results:
* PHD reduces energy by 8.3X to 29.6X over Weifdienberger.

= 40 A PHD WeiBenberger - )
E o elbe! g — . 8.3X
> 20- 813X 29.6X
CICJ v
v
- O | | | . | |
4K 8K 16K 32K 64K

The size of symbols (bytes)

PHD is more energy-efficient !
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The GPU baselines execute the same self-synchronization-based Huffman decoding algorithm as PHD.
PHD is more energy-efficient than its GPU counterparts.


Desigh Space Exploration

* Architecture parameters in PHD:
* P1: Subsequence-level parallelism in intra-sequence synchronization stage.

» P2: Subsequence-level parallelism in the inter-sequence synchronization stage.
* P4: Subsequence-level parallelism in the symbol generation stage.
* Subsequence size: workload capacity of each decoder.

* Results:
* Large P1 and P2 parallelism are crucial for overall performance.

» Smaller subsequence size leads to a little longer latency

512b 128b
100 - 256b

Latency (us)

Latency (us)
Decoding

e S
OOOO
o O o

Decoding

Decoding
Latency (us)

| | |
. 1632;:4 4K 8K 16K 32K 64K
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PHD is parameterized !
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PHD offers several tunable architectural parameters, allowing optimization for different scenarios.


Summary
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B
Summary

* We presented PHD, the first accelerator targeting at self-synchronization-
based parallel Huffman decoding.
PHD realizes bit-level, codeword-level and tile-level parallelism.
PHD implements a compact codebook interface based on hybrid memory.
PHD proposes ONCE MORE optimization to accelerate subsequence decoding.

* Future work:
An analytical performance model of PHD.
Generating and tuning PHD automatically.

If you need the code for research, please send an email to me! ©
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In summary, we presented PHD, the first accelerator based on self-synchronization-based parallel Huffman decoding. First, PHD realizes bit-level, codeword-level, and tile-level parallelism. Second, PHD implements a compact codebook interface based on hybrid memory. Third, PHD proposes the ONCE MORE optimization to accelerate subsequence decoding. As demonstrated in the evaluation, PHD is highly parameterized (pə'ræmitəraizd). An analytical performance model for PHD is appealing, and a framework for automatically generating and tuning PHD for different scenarios is also required. If you need the code, please send an email to me! 
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