

PHD: Parallel Huffman Decoder on FPGA for
Extreme Performance and Energy Efficiency
Yunkun Liao1,2,3, Jingya Wu1, Wenyan Lu1,4, Xiaowei Li1,3, Guihai Yan1,4

SKLP, Institute of Computing Technology, Chinese Academy of Sciences1

University of Chinese Academy of Sciences2

Zhongguancun Laboratory3

YUSUR Technology Co., Ltd.4

演示者
演示文稿备注
Thanks for the introduction. Good afternoon, everyone. My name is Yunkun Liao, PhD student from the Institute of Computing Technology at the Chinese Academy of Sciences. Today, I will introduce a domain-specific accelerator called PHD for Huffman decoding.

CONTENTS

Background Knowledge 1

Proposed Architecture: PHD2

Experiment Results3

Summary4

演示者
演示文稿备注
Here is today’s agenda

Background Knowledge

演示者
演示文稿备注
First, I will provide some background knowledge on parallel Huffman decoding.

Huffman Coding

Profiling conducted on the LZSS compression1

1https://github.com/hzxa21/15618-FinalProject

• A lossless data compression scheme.
• Main idea: Encodes frequent symbols using shorter codewords and vice visa.

• Widely used in many data compression algorithms.
• LZSS, ZIP, JPG, etc.

• Domain-specific accelerator design for Huffman coding is required.
• This work accelerates Huffman decoding.

(a) Huffman coding tree; (b) Huffman coding table; (c) Huffman encoding
and decoding.

An accelerator for Huffman decoding is required.

演示者
演示文稿备注
Huffman coding is a widely used data compression scheme. As shown in the Huffman tree, the main idea of Huffman coding is to encode frequent symbols with shorter codewords. // According to a profiling conducted on the LZSS compression, Huffman encoding and decoding are the bottlenecks. Decoding is harder to accelerate than encoding due to inherent dependency. This work proposes a domain-specific accelerator for Huffman decoding.

Huffman Decoding
• Bit-serial decoding based on traversing the Huffman tree.
• Bit-parallel decoding based on looking up codebook.

• Dominated method in existing Huffman decoding accelerators.

The codebook can be constructed
from the Huffman tree.

Decoding “110” to “d” requires three traversals. Decoding “110” to “d” requires one lookup.

Huffman tree Regular codebook

Huffman decoding requires codeword-level parallelism.

How to decode
multiple
codewords in
parallel?

演示者
演示文稿备注
The most straightforward Huffman decoding algorithm is the bit-serial decoding. The bit-serial decoding traverse the Huffman tree from the root node to the leaf node. // For example, decoding “110” requires three traversals. // To eliminate the need for Huffman tree traversal, bit-parallel decoding is proposed. // In bit-parallel decoding, a codebook is constructed from the Huffman tree. With the codebook, decoding “110” requires only one lookup. // However, adjacent codewords are decoded in serial due to the unknown codeword boundaries.

Parallelizing Decoding is Hard
• Codeword-level parallelism can be obtained by partitioning the codeword bit stream.

Parallelizing the decoding requires identifying codeword boundaries.

codeword bit stream

D
ec

od
er

D
ec

od
er

D
ec

od
er

D
ec

od
er

D
ec

od
er

D
ec

od
er

D
ec

od
er

D
ec

od
er

D
ec

od
er

A codeword

演示者
演示文稿备注
Codeword-level parallelism can be obtained by partitioning the codeword bit stream. // After the partition,multiple decoders work on the substreams in parallel. // However, A codeword may span two substreams. // This kind of parallelism is only achievable when the codeword boundaries are identified in advance.

Parallelizing Decoding by Self-synchronization
• Almost all Huffman codes have the self-synchronization property2.
• Achieve codeword-level parallelism with the self-synchronization.

• Phase_1: Intra-sequence synchronization.
• Phase_2: Inter-sequence synchronization.
• Phase_3: Calculating the codeword boundaries.
• Phase_4: Parallel decoding on 𝑁𝑁 subsequences.

Self-synchronization property. (a) Codewords splitting; (b) Synchronization information; (c) Phase_1; (d)
Phase_2 (e) Phase_3 (f) Phase_4.

2Ferguson, Thomas, et al. "Self-synchronizing huffman codes (corresp.)." IEEE Transactions on Information Theory 30.4 (1984): 687-693.

Self-synchronization trades computational complexity for parallelism.

演示者
演示文稿备注
The good news is that almost all Huffman codes have the self-synchronization property. As shown in the example, decoding from the sixth bit can also generate correct symbols. // Based on this property, the parallel Huffman decoding algorithm is proposed, consisting of four phases (ˈfeɪzɪz). The original codewords are split into multiple equal-sized subsequences. A fixed number of subsequences form a sequence. Phase One is called Intra-sequence synchronization where parallel decoders find the correct codeword boundaries within a sequence. // Phase Two is called Inter-sequence synchronization, where parallel decoders re-align the codeword boundaries among sequences (ˈsiːkwənsɪz). // In Phase Three, the codeword boundaries between subsequences are calculated. // In Phase Four, all the subsequences are decoded in parallel because the codeword boundaries are identified. // // Overall, the self-synchronization-based parallel decoding uses the first three phases to resolve the codeword dependencies between subsequences, to allow parallelism in the fourth phase.

Parallelizing Decoding Example
0 0 0 1

1 0 1 1

0 0 1 1

0 0 0 1

1 0 1 0

Decoder state table：Sync √，Not Sync ×。
×
×
×
×
×

0 0 0 1

1 0 1 1

0 0 1 1

0 0 0 1

1 0 1 0

0 0 0 1

1 0 1 1

0 0 1 1

0 0 0 1

1 0 1 0

0 0 0 1

1 0 1 1

0 0 1 1

0 0 0 1

1 0 1 0

×
×

√
√

√

√
√
√
√
√

Codeword boundary

Decoder

Reference Huffman Tree

Assume decoding one symbol requires constant time 𝑇𝑇
Serial decoding：9𝑇𝑇
Parallel decoding ： 8𝑇𝑇

Equal => Sync

演示者
演示文稿备注
Here is an example. Assume (əˈsuːm) we have five subsequences. At the beginning, each subsequence assumes the codeword boundary at the end. Five unsynchronized decoders will decode the subsequences in parallel. After one iteration (ˌɪtəˈreɪʃn), the decoders will identify new codeword boundaries. If the codeword boundary is unchanged, corresponding decoder is synchronized. The unsynchronized decoders overflow to the adjacent subsequence. After all the decoders are synchronized, the correct codeword boundaries are identified. Overall, the parallel decoding algorithm will reduce the decoding time compared to the serial decoding.

Proposed Architecture: PHD

演示者
演示文稿备注
Second, I will present the novelty proposed in PHD.

Overall Architecture of PHD
• PHD: The first self-synchronization-based Parallel Huffman Decoder architecture for

FPGA.
• Codebook interface based on hybrid memory.
• ONCE MORE decoding optimization.
• Tile-based pipeline dataflow.

PHD is the first accelerator to leverage the self-synchronization.

演示者
演示文稿备注
PHD is the first self-synchronization-based parallel decoder architecture for FPGA, including three main novel designs. // First, a codebook interface based on hybrid memory is proposed to balance the lookup speed and Block RAM consumption. // Second, the ONCE MORE decoding optimization is proposed to make subsequence-level decoders faster. // Third, a tile-based pipeline is proposed to address the limitation of codeword tile.

The Challenge of Codebook Storage
• The decoders of PHD is based on bit-parallel Huffman decoding, requiring codebook.
• Homogeneous storage designs.

• BRAM-only: Fast, but with limited codebook size.
• Regular codebook for 𝑆𝑆-bit Huffman code is 2𝑆𝑆 bytes.

• For HTTP/2 HPACK Huffman code3, 𝑆𝑆 is 30, requiring 2GB.

• DRAM-only: Support large codebook, but slow.

• Low-latency and storage-efficient codebook interface is required.

3Peon, Roberto, et al. HPACK: Header compression for HTTP/2. No. rfc7541. 2015.

PHD should balance the lookup speed and BRAM consumption.

演示者
演示文稿备注
As shown in the background, bit-parallel decoding is faster than bit-serial decoding. The decoders of PHD are based on the bit-parallel Huffman decoding. The bit-parallel decoder looks up the codebook to translate the codewords into symbols. How to store the codebook on FPGA efficiently? Homogeneous storage designs like BRAM-only or DRAM-only have drawbacks. // A BRAM-only design is fast, but the codebook size is limited by tight BRAM capacity. A DRAM-only design can support a large codebook, but it is slow. Ideally, a low-latency and storage-efficient codebook interface is required. // PHD should balance the lookup speed and BRAM consumption.

Codebook Interface based on Hybrid Memory
• Key enabler: Most Huffman codes are canonical. The regular codebook for canonical

code can be split into one primary codebook and multiple secondary codebooks4.
• Our insight: Primary codebook is for short codewords. The symbols of short codeword

are more common in Huffman code by design.
• Our hybrid storage design:

• Multi-channel BRAM for primary codebook
• Shared-channel DRAM for secondary codebooks.

4Yamamoto, Naoya, et al. "Huffman coding with gap arrays for GPU acceleration.“ In ACM ICPP, 2020.

Regular codebook

For canonical
Huffman code

Compact codebooks Codebook interface based
on hybrid memory

PHD makes short (common) -codeword lookup fast.

CDF of code length from
HPACK-Huffman files

演示者
演示文稿备注
The codebook interface of PHD is based on hybrid memory. Most practical Huffman codes are canonical. The key enabler is that the regular codebook for canonical codes can be split into one primary codebook and multiple secondary codebooks. The primary codebook is for codewords of small length. // We observe that symbols with small codeword lengths are more common in Huffman codes by design. // Our hybrid storage design uses multi-channel BRAM for the primary codebook to make common cases fast. The less common secondary codebooks are stored in the shared-channel DRAM.

ONCE MORE Decoding
• Codewords are sent to a shift-register-based window for decoding.
• Previous naïve decoding5,6,7: generate one symbol per iteration.
• Our insight: The codeword window may contains multiple short codewords.
• ONCE MORE decoding: decode a codeword window in one iteration as much as

possible.

5Weißenberger, André, et al. "Massively parallel Huffman decoding on GPUs." In ACM ICPP, 2018.
6Rivera, Cody, et al. "Optimizing huffman decoding for error-bounded lossy compression on gpus." In IEEE IPDPS, 2022.
7AMD Xilinx. “Vitis Accelerated Libraries.” https://www.xilinx.com/products/design-tools/vitis/vitis-libraries.html.

(a) Naïve decoding. (b) ONCE MORE decoding.

PHD makes subsequence-level decoders fast.

The shift register can contain the longest
codeword.

Codeword-1 Codeword-2

演示者
演示文稿备注
In the bit-parallel decoder, codewords are sent to a shift-register-based window for decoding. The codeword window can contain the longest codeword. //We observe that the codeword window may contain multiple short codewords. // Previous methods generate one symbol per iteration naively. // We propose the ONCE MORE decoding, which decodes a codeword window in one iteration as much as possible. In detail, after one symbol is decoded, the decoder will try to decode the codeword window once more time before updating the codeword window.

The Challenge of Codeword-Tile Dependency
• On-chip codeword tile is used to support one-cycle codewords access.
• The size of on-chip codeword tile is limited and codewords are split into multiple tiles.
• There are dependencies between consecutive tiles.

• A codeword may span two tiles.
• Ignoring the dependencies between consecutive tiles leads to incorrect decoding results

of the remaining codeword tiles.

Illustration of the codeword-tile dependency

PHD should guarantee the correctness.

演示者
演示文稿备注
On-chip codeword tile is used to support one-cycle codewords access. The size of on-chip codeword tiles is limited. Therefore, codewords are split into multiple tiles. However, there are dependencies between consecutive tiles because a complete codeword may span two tiles. Ignoring the dependencies between consecutive tiles leads to incorrect decoding results of the remaining codeword tiles. //

Tile-based Pipeline
• Our insight: no dependencies between codeword tiles at the subsequence level in the

intra-sequence synchronization stage.
• Intra-sequence Sync of Tile2 can run in parallel with the inter-sequence Sync of Til𝑒𝑒1.

• Our methods: remember and forward the remaining bits of the previous tile to the
subsequent tile in the inter-sequence synchronization stage.

PHD enables tile-level parallelism without compromising correctness.

演示者
演示文稿备注
We observe that there are no dependencies between codeword tiles at the subsequence level in the intra-sequence synchronization stage. In the figure, the intra-sequence synchronization of Tile-two can run in parallel with the inter-sequence synchronization of Tile-one. How do we resolve the dependency between tiles? The inter-sequence synchronization stage of PHD remembers and forwards the remaining bits of the previous tile to the subsequent tile in the inter-sequence synchronization stage. //

Experiment Results

演示者
演示文稿备注
Third, I will share the experiment results.

Setup
• Huffman code: HTTP/2 HPACK, used for compressing the HTTP/2 packet header fields.
• PHD: Described using the Xilinx HLS C++, Xilinx Vitis 2022.1 is used for cycle-accurate

simulations, synthesis and implementations.
• Baselines:

• CPU: a performance-optimized library called LS-HPACK8, running on Intel Core-i5 12400 processor.
• GPU: the open-source code of Weißenberger9, adapted to HTTP/2 HPACK, running on NVIDIA GeForce

RTX 4090 GPU.
• FPGA: Bit-parallel, described using the Xilinx HLS C++.

8https://github.com/litespeedtech/ls-hpack
9https://github.com/weissenberger/gpuhd

演示者
演示文稿备注
We select the HTTP/2 HPACK Huffman code as the case study, which is used for compressing the HTTP/2 packet header fields. We describe PHD in Xilinx HLS. Xilinx Vitis is used for cycle-accurate simulations, synthesis, and implementations. Three types of baselines are selected, including CPU, GPU, and FPGA baselines.

Decoding Latency
• Results:

• Compared with CPU baseline: a latency reductions ranging from 24.5X to 60.6X.
• Compared with bit-parallel FPGA baseline: a latency reduction ranging from 18.5X to 57.5X.
• Compared with GPU baseline: latency reductions of 5.6X to 25.4X over Weißenberger.

PHD is faster !

4K 8K 16K
The size of symbols (bytes)

32K 64K

200

0

400

600

800

1000

D
e
co

d
in

g
La

te
n
cy

(u
s) PHD without ONCE MORE

PHD without Tile -based Pipeline

PHD

Weißenberger

25.4X 25.2X 16.7X 9.9X 5.6X

3.3X
2.3X

演示者
演示文稿备注
PHD demonstrates superior speedup compared to CPU, FPGA, and GPU baselines. The proposed optimizations, such as ONCE MORE decoding and the tile-based pipeline, are essential for achieving PHD's exceptional performance.

Energy Consumption
• Results:

• PHD reduces energy by 8.3X to 29.6X over Weißenberger.

PHD is more energy-efficient !

4K 8K 16K

The size of symbols (bytes)

32K 64K

20

0

40

En
e

rg
y

(m
J) PHD Weißenberger

28.3X 29.6X
22.7X 13.8X 8.3X

演示者
演示文稿备注
The GPU baselines execute the same self-synchronization-based Huffman decoding algorithm as PHD.
PHD is more energy-efficient than its GPU counterparts.

Design Space Exploration
• Architecture parameters in PHD:

• 𝑃𝑃1: Subsequence-level parallelism in intra-sequence synchronization stage.
• 𝑃𝑃𝑃: Subsequence-level parallelism in the inter-sequence synchronization stage.
• 𝑃𝑃𝑃: Subsequence-level parallelism in the symbol generation stage.
• Subsequence size: workload capacity of each decoder.

• Results:
• Large 𝑃𝑃𝑃 and 𝑃𝑃𝑃 parallelism are crucial for overall performance.
• Smaller subsequence size leads to a little longer latency

2
4

P2
8

P4
8

16

64
32

300

200

100

0

De
co

di
ng

La
te

nc
y

(u
s)

8 16
32

P1
64

P4
8

16

64
32

600

400
200
0

De
co

di
ng

La
te

nc
y

(u
s)

4K 8K 16K 32K 64K
The size of symbols (bytes)

0

100

D
ec

od
in

g
La

te
nc

y
(u

s) 512b
256b

128b

PHD is parameterized !

演示者
演示文稿备注
PHD offers several tunable architectural parameters, allowing optimization for different scenarios.

Summary

Summary
• We presented PHD, the first accelerator targeting at self-synchronization-

based parallel Huffman decoding.
• PHD realizes bit-level, codeword-level and tile-level parallelism.
• PHD implements a compact codebook interface based on hybrid memory.
• PHD proposes ONCE MORE optimization to accelerate subsequence decoding.

• Future work:
• An analytical performance model of PHD.
• Generating and tuning PHD automatically.

If you need the code for research, please send an email to me! 

演示者
演示文稿备注
In summary, we presented PHD, the first accelerator based on self-synchronization-based parallel Huffman decoding. First, PHD realizes bit-level, codeword-level, and tile-level parallelism. Second, PHD implements a compact codebook interface based on hybrid memory. Third, PHD proposes the ONCE MORE optimization to accelerate subsequence decoding. As demonstrated in the evaluation, PHD is highly parameterized (pə'ræmitəraizd). An analytical performance model for PHD is appealing, and a framework for automatically generating and tuning PHD for different scenarios is also required. If you need the code, please send an email to me!

THANK YOU!

	幻灯片编号 1
	幻灯片编号 2
	幻灯片编号 3
	幻灯片编号 4
	Huffman Coding
	Huffman Decoding
	Parallelizing Decoding is Hard
	Parallelizing Decoding by Self-synchronization
	Parallelizing Decoding Example
	Proposed Architecture: PHD
	Overall Architecture of PHD
	The Challenge of Codebook Storage
	Codebook Interface based on Hybrid Memory
	ONCE MORE Decoding
	The Challenge of Codeword-Tile Dependency
	Tile-based Pipeline
	Experiment Results
	Setup
	Decoding Latency
	Energy Consumption
	Design Space Exploration
	幻灯片编号 22
	Summary
	THANK YOU!

